SoyBase Follow us on Twitter @SoyBaseDatabase
Integrating Genetics and Genomics to Advance Soybean Research



Reference Report for RTN20151125.5
Title:Alterations in soybean gene expression profile after foliar application of lipo-chitooligosaccharide (LCO) from Bradyrhizobium japonicum under sub-optimal temperature
Authors:Wang, N., Smith, D.L.
Source:Unpublished Dataset
Abstract:Lipo-chitooligosaccharides (LCOs) produced by N2-fixing rhizobacteria initiate host nodule formation. Foliar application of LCOs has been shown to induce stress-related genes under optimal growth conditions. To study the effects of LCO foliar spray under stressed conditions, soybean seedlings grown at optimal temperature were exposed to sub-optimal temperature. After a 5-day acclimation period, the first trifoliolate leaves were sprayed with 10-7 M LCO (NodBj-V (C18:1, MeFuc)) produced by Bradyrhizobium japonicum, and harvested at 0 and 48 h following treatment. Microarray analysis was performed using Affymetrix GeneChip¨ Soybean Genome Arrays. A total of 147 genes were differentially expressed 48 h after LCO treatment, including a number of stress-related genes and transcription factors. In addition, during the 48 h following treatment, hundreds of genes were differentially expressed in LCO-treated plants, indicating that the dynamic soybean foliar transcriptome was highly responsive to LCO treatment. The microarray data was supported by quantitative real-time PCR data. Soybean seedlings grown at optimal temperature (25 ĄC) were exposed to sub-optimal temperature (15 ĄC). After a 5-day acclimation period, the first trifoliolate leaves were sprayed with 10-7 M LCO (NodBj-V (C18:1, MeFuc)) produced by Bradyrhizobium japonicum, and harvested at 0 and 48 h following treatment. Total RNA was extracted and microarray analysis was performed using Affymetrix GeneChip¨ Soybean Genome Arrays.






Funded by the USDA-ARS. Developed by the USDA-ARS SoyBase and Legume Clade Database group at the Iowa State University, Ames, IA
 
USDA Logo
Iowa State University Logo