SoyBase Follow us on Twitter @SoyBaseDatabase
Integrating Genetics and Genomics to Advance Soybean Research



Reference Report for AP20210630.2
Title:The salt-induced transcription factor GmMYB84 confers salinity tolerance in soybean.
Authors:Zhang, W., Wang, N., Yang, J., Guo, H., Liu, Z., Zheng, X., Li, S., Xiang, F.
Source:Zhang et al. 2020 Plant Sci., 291:110326
Abstract:Transcription factor activation and DNA methylation are important plant responses to abiotic stress. Here, we established that the salinity stress-induced expression of the soybean (Glycine max) transcription factor-encoding gene GmMYB84 relies on DNA methylation. The level of DNA methylation at sequences 690nt to 950nt upstream of the GmMYB84 transcription initiation codon was markedly reduced in plants exposed to salinity stress, resulting in a higher abundance of transcripts. When challenged with salinity stress, plants constitutively expressing GmMYB84 outperformed untransformed plants with respect to their germination rate, primary root elongation, proline accumulation, antioxidant enzyme activity, membrane integrity, and K+ levels. Arabidopsis thaliana plants heterologously expressing GmMYB84 were more tolerant to salt stress and exhibited higher germination rates than the wild type. Electrophoretic mobility shift assays revealed that GmMYB84 binds to the cis-regulatory sequences of GmAKT1, the homolog of ARABIDOPSIS K+ TRANSPORTER 1 (AKT1). Thus, DNA methylation modulates the salinity stress-induced expression of the soybean transcription factor-encoding gene GmMYB84 and thereby confers salinity stress tolerance.






Funded by the USDA-ARS. Developed by the USDA-ARS SoyBase and Legume Clade Database group at the Iowa State University, Ames, IA
 
USDA Logo
Iowa State University Logo