


Istvan Rajcan, Mayumi Acosta Bastidas, Shawn Winter, Barry J. Shelp, Terry R. Anderson, Tom W. Welacky

Soybean Breeders' Workshop

St. Louis, MO

February 23, 2010



### **Resistant cultivars**

1970s: release of resistant cultivars



- Resistance sources: Peking, PI88788
- 93% of 760 Cultivars derive from Peking / PI 88788 Concibido *et al.* (2004)
- Narrow genetic base of SCN resistance in *G. max* pathogen overcomes resistance due to "race shifts"

### **SCN resistance**

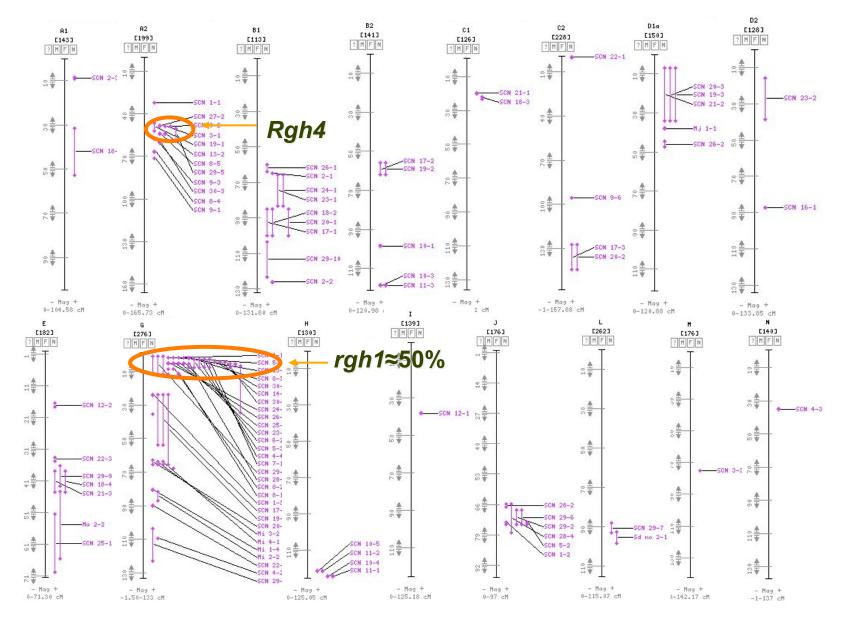
- » Resistant cultivars
- » Hypersensitive response
  \$\$
  > Syncytium degeneration
- » Extensin, catalase, cyclin, aldolase, GTP-binding protein.



### **Genetics of SCN resistance**

- Polygenic trait, many QTL
- Major genes: rhg 1, rhg 2, rgh 3, Rhg 4, rhg5

### **Need to identify NEW resistance genes**




Potential source of NEW SCN resistance genes

Durable resistance against multiple HG Types

### **SCN-resistance QTL**

#### SoyBase, 2009



### SCN-resistance QTL (Winter et al. 2007)

#### • QTL effects

- QTL stability across
  - genetic backgrounds

### **2. Objectives**

1) To determine if the loci at the resistant QTL from the original *G. soja* parent, PI 464925B harbor alleles with similar effects in other *G. soja* germplasm.

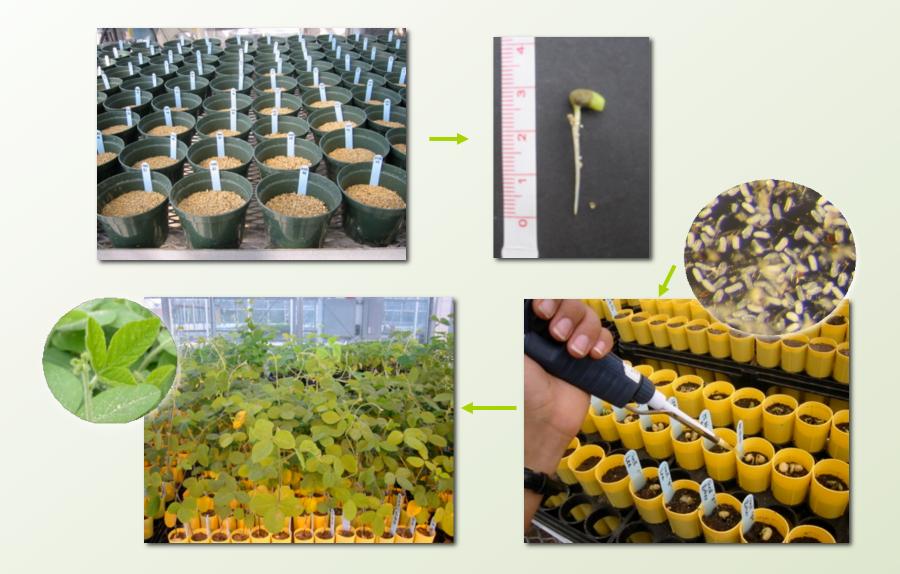
121 F<sub>6</sub>: *G. max* NK S08-80 X *G. soja* PI 458536


2) To determine if the QTL for SCN resistance derived from *G. soja* PI 464925B, have the same effect when combined in a different *G. max* background.

209 F<sub>4</sub>: *G. max* OAC Shire X *G. soja* PI 464925B

### Plant materials – 1<sup>st</sup> Challenge

- » Westag 97': Susceptible cultivar used in nematode culture
- » Chatham isolate HG Type 7 (Race 3) --> 50x
- » *G. max* x *G soja* populations advanced by SSD:


**Pop2:** 121 F<sub>6</sub> RILs --> **'NK S08-80'** X PI 458536 **Pop4:** 209 F<sub>4</sub> RILs --> 'OAC Shire' X **PI 464925B** 



#### **Controls:**

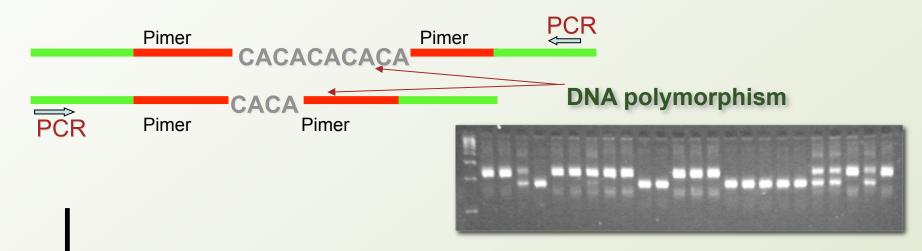
- » 'Lee 74'--> Susceptible (S) to all SCN races (HG Types)
- » 'Ina' --> resistant (R) to races 1, 2, 3, 5 and MR to 14, S to 4
- » 'Jack'--> R to races 3 and 4
- » 'RCAT Ruthven' --> MR to race 3 (HG Type 7)

### Nematode Bioassay



### **Nematode Bioassay**






Female Index (FI): FI= (# Cyst on RIL/ # Cyst on Lee 74)\*100



### **SSR Genotyping**

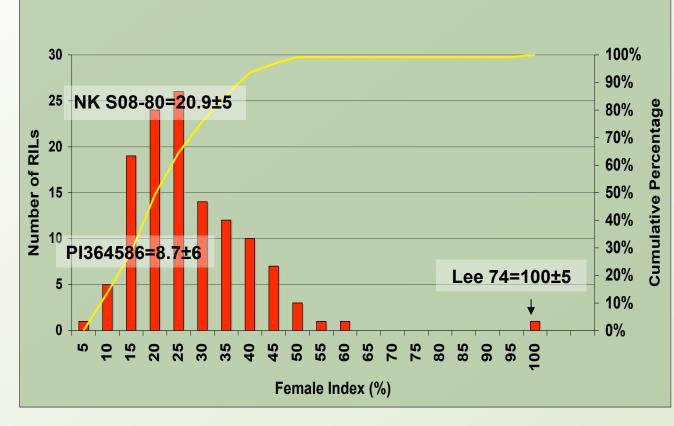
#### Simple Sequence Repeat Markers



» 20 SSRs (Winter et al. 2007).

» 100 SSRs (Soybase, 2008) LGs O, K, I, G, C1, M, A2, E, F

49 polymorphic SSRs selected for mapping Pop250 polymorphic SSRs selected for mapping Pop4


# Root weight analysis (Pop2) – 2<sup>nd</sup> challenge

- Entry F-value = 7.11, p < 0.0001
- Root weight F-value = 40.42, p < 0.0001

#### Root wt significant covariate (r = 0.26) ---- Adjust cyst count

### **Segregation of Female Index (FI)**

#### Pop2: 'NK S08-80' x PI 458536



**FI** calculated with adjusted Cyst count

**HR**= Highly Resistant

**MS**= Moderately Resistant

**MS**= Moderately Susceptible

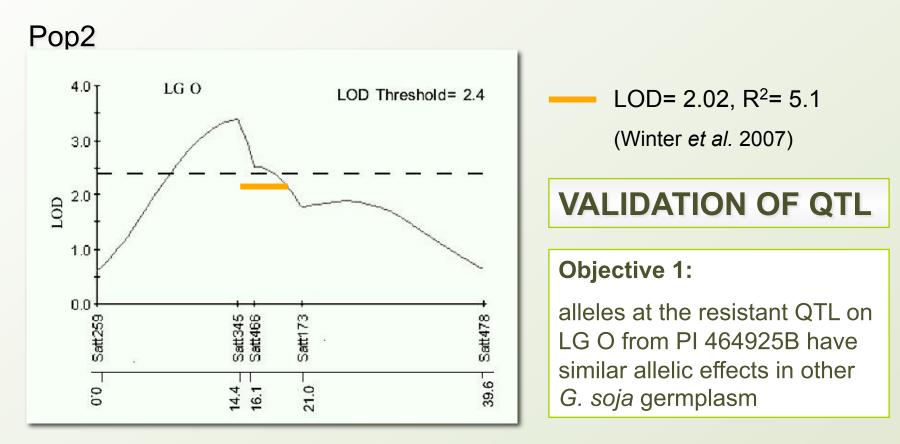
S= Susceptible

**Broad Sense Heritability: 84.2%** 

### **SSRs associated with SCN resistance**

#### Pop2. Data based on single factor ANOVA

| SSR     | Linkage<br>Group | P > F  | R <sup>2</sup> (%) | Allelic Means |           |           |  |  |
|---------|------------------|--------|--------------------|---------------|-----------|-----------|--|--|
|         |                  |        |                    | Α             | В         | н         |  |  |
| Satt345 | 0                | 0.0004 | 12.6               | 19.7 ±1.0     | 14.3 ±0.9 | 18.7 ±2.5 |  |  |
| Satt466 | 0                | 0.0012 | 11                 | 19.1 ±1.0     | 14.5 ±0.9 | 21.5 ±2.9 |  |  |
| Satt173 | 0                | 0.0088 | 7.8                | 18.8 ±1.0     | 14.8 ±1.0 | 19.7 ±2.3 |  |  |
| Satt578 | C1               | 0.0123 | 7.2                | 18.8 ±0.9     | 14.8 ±1.0 | 18.7 ±2.4 |  |  |
| Satt326 | K                | 0.0162 | 6.8                | 14.9 ±1.0     | 18.9 ±0.9 | 16.4 ±2.7 |  |  |
| Satt185 | Е                | 0.0236 | 6.2                | 16.1 ±1.0     | 17.0 ±0.9 | 23.8 ±2.6 |  |  |
| Sat_167 | K                | 0.0315 | 5.7                | 16.0 ±0.9     | 17.9 ±1.0 | 33.6 ±7.3 |  |  |
| Satt349 | K                | 0.0380 | 5.5                | 15.2 ±1.0     | 18.5 ±0.9 | 20.7 ±3.7 |  |  |

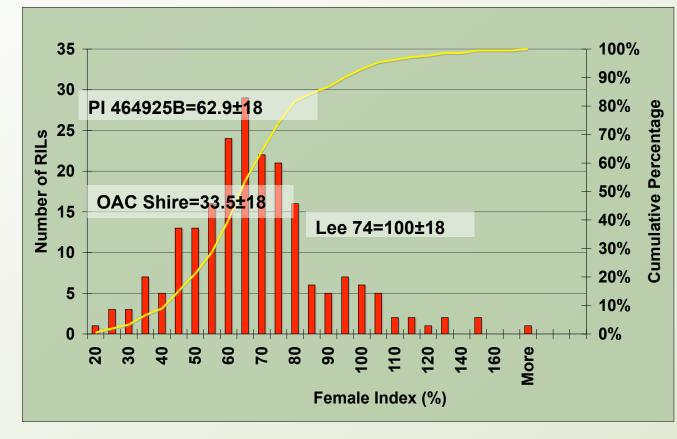

µ=0.05

A= 'NK S08-80' allele

B= PI 458536 allele

H= Heterozygous allele

### **QTL** associated with SCN resistance




| LG | Interval        | Length<br>(cM) | Position<br>(cM) <sup>a</sup> | R <sup>2</sup> (%) | LOD  |  |
|----|-----------------|----------------|-------------------------------|--------------------|------|--|
| 0  | Satt345-Satt466 | 4.9            | 14.43                         | 12.20              | 3.39 |  |

<sup>a</sup> expressed as the distance from the first marker

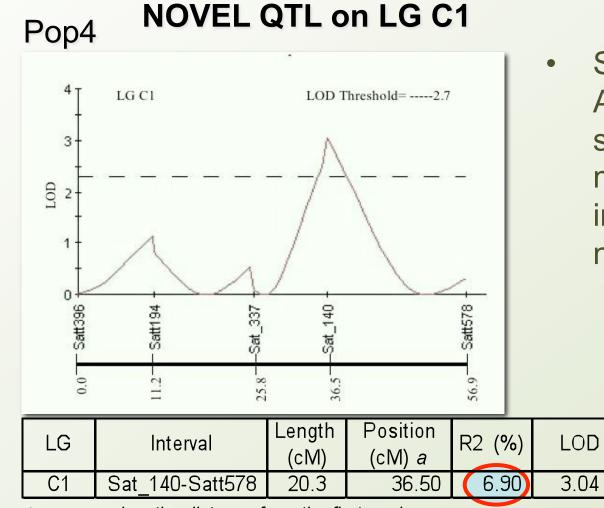
### **Segregation of Female Index (FI)**

#### Pop4: 'OAC Shire' x PI 464925B



**FI** calculated with adjusted Cyst count

**HR**= Highly Resistant


**MS**= Moderately Resistant

**MS**= Moderately Susceptible

S= Susceptible

**Broad Sense Heritability: 41.4 %** 

### **QTL** associated with SCN resistance



Single factor ANOVA confirmed some individual marker/QTL but interval mapping did not

<sup>a</sup> expressed as the distance from the first marker

### **Epistatic interactions – 3<sup>rd</sup> challenge**

| L                      | Locus 1                         |    | ocus 2  | F-Value | P>F      | R <sup>2 (%)</sup> | Two-locus Genotypic Means |      |      |      | Additive effect |       |
|------------------------|---------------------------------|----|---------|---------|----------|--------------------|---------------------------|------|------|------|-----------------|-------|
| LG                     | SSR                             | LG | SSR     | r-value |          |                    | AA                        | AB   | BA   | BB   | L1/A            | L1/B  |
| 'NK 08-80' x PI 458536 |                                 |    |         |         |          |                    |                           |      |      |      |                 |       |
| C1                     | Satt139                         | 0  | Satt466 | 14.56   | 0.000235 | 11                 | 22.7                      | 13.6 | 15.3 | 16   | 3.38            | -1.21 |
|                        | 'OAC Shire' <b>X PI 464925B</b> |    |         |         |          |                    |                           |      |      |      |                 |       |
| C1                     | Sat_337                         | Е  | Satt185 | 15.6    | 0.00012  | 9                  | 22.1                      | 31.4 | 26.2 | 24.4 | -2.13           | 3.54  |
| C1                     | Satt194                         | Е  | Satt369 | 17.1    | 5.88E-05 | 10                 | 23.5                      | 31.4 | 26.9 | 23.3 | -1.72           | 4.04  |
| 0                      | Satt445                         | G  | Satt533 | 15.7    | 0.00011  | 9                  | 22.5                      | 27.7 | 30.1 | 24.5 | -3.81           | 1.6   |

**A** allele from *Glycine max* 

**B** allele from *Glycine soja* 

**L1/A** additive effect of locus 1 in combination with the *G. max* allele at locus 2, calculated as (AA-BA)/2

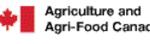
**L1/B** additive effect of locus 1 in combination with the *G. soja* allele at locus 2, calculated as (AB-BB)/2

### **5. Conclusions**

- 1. Segregation for FI showed continuous variation in both populations quantitative SCN resistance.
- 2. Root weight a significant covariate and should be considered when analyzing SCN data from *G. soja*.
- 3. High polymorphism confirmed genetic variability between *G. max* and *G. soja*
- 4. Confirmation of SCN-resistant QTL on LG O derived from different *G. soja* backgrounds

### 5. Conclusions

- 5. Previously reported QTL intervals were not confirmed in the population derived from 'OAC Shire' x PI 464925B indicating that the effect of resistance alleles from PI 464925B is dependent of the background of the *G. max* parent.
- 6. New QTL on C1 identified in cross OAC Shire x PI 464925B
- 7. Epistatic interactions between loci play a significant role in the expression of SCN resistance
- 8. <u>Opportunity</u>: a vast array of untapped and often unknown trait variation exists in *G. soja*, particularly for disease resistance including SCN


### 7. Acknowledgements





Zilka, Wade Montminy, Julia Yessenia Salazar, Lin Liao, Timothy Currie, Natalie Dimeo, Godfrey Chu, Dr. Gordon Hoover, Rodger Tschanz, Ron Dutton, Chris Grainger, Dr. Michelle Edwards, Dr. Laura Palomeque.





Agriculture et Agri-Food Canada Agroalimentaire Canada



## Thank you

